
Motivation
Hedonic Model

Results
Implementation

Summary

How to Price a House
An Interpretable Bayesian Approach

Dustin Lennon
dustin@inferentialist.com

Inferentialist Consulting
Seattle, WA

April 9, 2014

How To Price a House

mailto:dustin@inferentialist.com


Motivation
Hedonic Model

Results
Implementation

Summary

Introduction

Project to tie up loose ends / came out of interview prep for
Climate Corp

Disclaimer: two week sprint, not a dissertation

An easier version of a more involved spatio-temporal model for
zipcode aggregation
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Housing Market

A few Wikipedia Facts

Outstanding U.S. residential mortgages: $10.6 trillion as of
midyear 2008

By August 2008, 9.2% of all U.S. mortgages outstanding were
either delinquent or in foreclosure
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A Valuation Problem?

Subprime loans, yes, but was there also a systemic failure in
estimating home values?

How To Price a House



Motivation
Hedonic Model

Results
Implementation

Summary

Size of Housing Market
Modeling/Technology Gap

Temporal Instability
Trulia

Seasonality, perhaps.
But a sliding median
approach breaks down
as the window size
goes to zero.

page accessed on 6/4/2014
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Overfitting
Zestimates

The time series
appears to “chase”
the listing data,
stays elevated for a
time, then abruptly
returns to baseline.

page accessed on 6/4/2014
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Spatial Instability
Zestimates

The time series appears to
adjust to the recently
added zipcode level
information, perhaps
indicating some spatial
instability when adjusting
to new data.

page accessed on 6/4/2014
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Ad-hoc Analysis

Limiting case failures

Lack of regularization / prior information

Uninterpretable models
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Hedonic Model I

Decompose home value into constituent parts

Zi = x t
i β + aiY (si) + δi ,

Zi price paid for the i th home
xi covariates associated with β [ e.g., square footage ]
β coefficients fixed across space [ e.g., build cost per square foot ]
ai lot size

Y (s) unit cost of land
si location
δi difference between the “true” value and the price paid
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Hedonic Model II

Data Model

[Z |β,Y ] ∼ N
([

X A
] [β

Y

]
,∆

)
∆ = diag

(
[σ2z2

1 , . . . , σ
2z2

n ]
)

Process Model

[β,Y ] = [β][Y ]

[β] ∼ N(ν,Φ)

Φ = diag ([φ1, . . . , φk ])

[Y ] ∼ N(τ1,Σ)

Σ = Σ(θ)

How To Price a House



Motivation
Hedonic Model

Results
Implementation

Summary

Model Specification
General Model
Model Fitting

Hedonic Model III

σ2 interpretable as coefficient of variation
Σ(θ) defines the covariance structure of the land value term

In particular, Σ(θ) is specified through an isotropic, Matern covariance
function:

Σij (θ) ≡ C
(

dij ; θ1, θ2, σ
2
0 , σ

2
1

)
= σ2

0 I0 (dij ) + σ2
1

(
2θ2−1Γ(θ2)

)−1
(

dij

θ1

)θ2

Kθ2

(
dij

θ1

)
and dij is the Euclidean distance between si and sj .
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General Model Formulation

Hierarchical
Formulation

[Z |G] ∼ N (MG,∆)

[G] ∼ N (µ,Ω)

Joint Distribution

[Z ,G] ∼ N
{(

Mµ
µ

)
,

[
∆ + MΩM t MΩ

ΩM t Ω

]}

Posterior Distribution

[G|Z ] ∼ N
(
µ̆, Ω̆

)
µ̆ ≡ µ+ ΩM t

(
∆ + MΩM t

)−1
(Z −Mµ)

Ω̆ ≡ Ω− ΩM t
(

∆ + MΩM t
)−1

MΩ
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Fitting the Model

Inference is on posterior distribution [G|Z ; Θ]

Specialize general case to hedonic model

EM Algorithm to obtain Θ̂. Iterate until convergence:
I update µ̆, Ω̆
I minimize −2E [log [Z ,G] |Z ; Θ]

−2E [log[Z ,G]|Z ; Θ] = logdet ∆ + logdet Ω + Z t ∆−1Z + µt Ω−1µ

− 2
[
Z t ∆−1M + µt Ω−1

]
µ̆

+ µ̆t
[
M t ∆−1M + Ω−1

]
µ̆

+ tr
[(

M t ∆−1M + Ω−1
)

Ω̆
]
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Data: Maps
TIGER/Line Shapefile Data
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Data: Home Sales
King County Department of Assessments

Table Joins:
I Real Property Sales (non-flagged 2012 records)

Exempt From Excite Tax
Related Party, Friend, or Neighbor
Quit Claim Deed
Multi-Parcel Sale

I Residential Buildings
I Parcel Information

Outlier Filtering:
I Sale Price: $100k to $5m
I Lot Size ≤ 1.03 acres
I No properties with multiple sale records in 2012

11,812 homes
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Data: Geocoding
Yahoo

2012: KC records have UID, street address, no lat/long

2014: Sporadic lat/long (Seattle, not Tacoma)

Yahoo geocoder: bash script, 500k lookups over two weeks

curl -s "http://where.yahooapis.com/geocode?&q=${addr},+${zip}&flags=C&appid=..."
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Scalability and Sampling I

Recall the objective function to be optimized on each iteration of EM
algorithm:

−2E [log[Z ,G]|Z ; Θ] = logdet ∆ + logdet Ω + Z t ∆−1Z + µt Ω−1µ

− 2
[
Z t ∆−1M + µt Ω−1

]
µ̆

+ µ̆t
[
M t ∆−1M + Ω−1

]
µ̆

+ tr
[(

M t ∆−1M + Ω−1
)

Ω̆
]

Naive approach with dense matrices:
I extremely memory intensive
I O(n3) cost to compute inverse

Solution: sample, weighted by inverse local density
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Model Output
Coefficients

σ2 0.222 coefficient of variation [active constraint]
ν1, φ1 (139.51, 57.42) build cost per square foot (living)
ν2, φ2 (0.00, 35.92) build cost per square foot (basement)
ν3, φ3 (0.00, 14.62) build cost per square foot (garage)
τ 7.19 lot size cost per square foot
θ1 2000 matern “spread” parameter [active constraint]
θ2 3.00 matern “shape” parameter [active constraint]
σ2

0 0.1 matern “nugget” effect [active constraint]
σ2

1 73.00 matern “variance”
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Model Output
Heatmaps

Need predictive distribution [y0|Z ]:

E [y0|Z ] = E [E (y0|Y ,Z ) |Z ]

= E [E (y0|Y ) |Z ]

Var [y0|Z ] = Var [E (y0|Y ,Z ) |Z ] + E [Var (y0|Y ,Z ) |Z ]

= Var [E (y0|Y ) |Z ] + E [Var (y0|Y ) |Z ]

[y0|Y ] is immediate: extend Σ(θ)
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Model Validation

Not a predictive model; attempts to characterize variation

Out of sample coverage of 95% confidence intervals:
Process 86.7%
Process + Proxy 92.0%
Process + Data 97.2%

Conclusion: the typical variability in a home’s sale price is
inherently large
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Scalability I

Goal: linear algebra operations to evaluate objective function,
gradient should be:

I sparse matrices
I low rank perturbations to sparse matrices
I arbitrarily close to sparse matrices under reasonable parameter

choices

Larger sample sizes require sparse representation

Specializing the general model:
I M is sparse; Ω decomposes into a diagonal and the Matern

matrix, Σ(θ).
I For θ1 small and θ2 bounded, Σ(θ) is arbitrarily close to a sparse

matrix
I For θ1 and θ2 bounded, Σ(θ) is well conditioned; relative to

underlying Euclidean distances
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Scalability I

For θ1 = 500:
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Scalability II
More on θ1

θ̂1 is an active constraint, at the upper bound

reflects a “desire” to increase spatial scale of correlation;
smoother surface

Conclusion: the upper bound enforced on θ1 should be
interpreted as a model complexity parameter

I keeping θ1 small increases sparsity of Σ(θ) and decreases scale
of spatial correlation effect

I choose upper bound via cross validation
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Inner Optimization

EM algorithm requires an inner optimization

Dynamically adjust the convergence tolerance (optim/factr) in
early iterations for speed
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Summary

The Hedonic Bayesian model needs very few parameters to
describe a complex spatial field.

The model does a good job describing the variability inherent in
the data.

Future Work
I Experimentation with smaller σ2; cross validation of θ1 upper

bound
I Increase scalability through a more thorough approach to sparsity
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