How to Price a House An Interpretable Bayesian Approach

Dustin Lennon

dustin@inferentialist.com

Inferentialist Consulting Seattle, WA

April 9, 2014

How To Price a House

ヘロン ヘ週ン ヘヨン ヘヨン

3

- Project to tie up loose ends / came out of interview prep for Climate Corp
- Disclaimer: two week sprint, not a dissertation
- An easier version of a more involved spatio-temporal model for zipcode aggregation

Size of Housing Market Modeling/Technology Gap

Outline

Motivation Size of Housing Market Modeling/Technology Gap Model Specification General Model Formulation Model Fitting Data Scalability and Sampling Model Output Model Validation Scalability & Sparsity Optimization

How To Price a House

イロト イポト イヨト イヨト

э

Size of Housing Market Modeling/Technology Gap

Housing Market

- A few Wikipedia Facts
 - Outstanding U.S. residential mortgages: \$10.6 trillion as of midyear 2008
 - By August 2008, 9.2% of all U.S. mortgages outstanding were either delinquent or in foreclosure

How To Price a House

ヘロン ヘアン ヘビン ヘビン

Size of Housing Market Modeling/Technology Gap

Housing Market

Seattle Metro Home Sales: 2012, by Zip

Size of Housing Market Modeling/Technology Gap

A Valuation Problem?

 Subprime loans, yes, but was there also a systemic failure in estimating home values?

How To Price a House

Size of Housing Market Modeling/Technology Gap

Temporal Instability Trulia

Seasonality, perhaps. But a sliding median approach breaks down as the window size goes to zero.

page accessed on 6/4/2014

イロン 不得 とくほ とくほ とうほ

Size of Housing Market Modeling/Technology Gap

Overfitting **Zestimates**

The time series appears to "chase" the listing data. stays elevated for a time, then abruptly returns to baseline.

page accessed on 6/4/2014

Size of Housing Market Modeling/Technology Gap

Spatial Instability Zestimates

The time series appears to adjust to the recently added zipcode level information, perhaps indicating some spatial instability when adjusting to new data.

page accessed on 6/4/2014

ヘロン ヘアン ヘビン ヘビン

ъ

Size of Housing Market Modeling/Technology Gap

Ad-hoc Analysis

- Limiting case failures
- Lack of regularization / prior information
- Uninterpretable models

How To Price a House

・ロト ・ 理 ト ・ ヨ ト ・

3

Model Specification General Model Model Fitting

Outline

- Motivation

 Size of Housing Market
 Modeling/Technology Gap

 Hedonic Model

 Model Specification
 General Model Formulation
 Model Fitting

 Results

 Data
 Scalability and Sampling
 - Model Output
 - Model Validation
- 4 Implementation
 - Scalability & Sparsity
 - Optimization
- 5 Summary

How To Price a House

ヘロト ヘワト ヘビト ヘビト

Model Specification General Model Model Fitting

Hedonic Model I

Decompose home value into constituent parts

$$Z_i = x_i^t \beta + a_i Y(s_i) + \delta_i,$$

- Z_i price paid for the i^{th} home
- x_i covariates associated with β [e.g., square footage]
- β coefficients fixed across space [e.g., build cost per square foot]
- ai lot size
- Y(s) unit cost of land
 - s_i location
 - δ_i difference between the "true" value and the price paid

・ロト ・ 理 ト ・ ヨ ト ・

-

Model Specification General Model Model Fitting

Hedonic Model II

$\begin{aligned} & \mathsf{Data \ Model} \\ & [Z|\beta, Y] \sim \mathit{N}\left(\begin{bmatrix} X & \mathit{A} \end{bmatrix} \begin{bmatrix} \beta \\ Y \end{bmatrix}, \Delta\right) \\ & \Delta = \mathsf{diag}\left(\begin{bmatrix} \sigma^2 z_1^2, \dots, \sigma^2 z_n^2 \end{bmatrix}\right) \end{aligned}$

Process Model

 $[\beta, Y] = [\beta][Y]$

$$egin{aligned} & [eta] \sim \textit{N}(
u, \Phi) \ & \Phi = ext{diag}\left([\phi_1, \dots, \phi_k]
ight) \end{aligned}$$

$$\begin{split} [Y] \sim \mathcal{N}(\tau \mathbf{1}, \Sigma) \\ \Sigma = \Sigma(\theta) \end{split}$$

・ロト ・ ア・ ・ ヨト ・ ヨト

Model Specification General Model Model Fitting

Hedonic Model III

- σ^2 interpretable as coefficient of variation
- $\Sigma(\theta)$ defines the covariance structure of the land value term

In particular, $\Sigma(\theta)$ is specified through an isotropic, Matern covariance function:

$$\begin{split} \Sigma_{ij}(\theta) &\equiv \mathcal{C}\left(\mathcal{d}_{ij}; \theta_1, \theta_2, \sigma_0^2, \sigma_1^2\right) \\ &= \sigma_0^2 I_0\left(\mathcal{d}_{ij}\right) + \sigma_1^2 \left(2^{\theta_2 - 1} \Gamma(\theta_2)\right)^{-1} \left(\frac{\mathcal{d}_{ij}}{\theta_1}\right)^{\theta_2} \mathcal{K}_{\theta_2}\left(\frac{\mathcal{d}_{ij}}{\theta_1}\right) \end{split}$$

and d_{ij} is the Euclidean distance between s_i and s_j .

Model Specification General Model Model Fitting

Hedonic Model III

Matern Covariance Function

How To Price a House

<ロ> (四) (四) (三) (三) (三)

Model Specification General Model Model Fitting

General Model Formulation

Hierarchical Formulation

 $egin{aligned} |Z|G| &\sim N\left(MG,\Delta
ight) \ [G] &\sim N\left(\mu,\Omega
ight) \end{aligned}$

Joint Distribution $[Z, G] \sim N\left\{ \begin{pmatrix} M\mu \\ \mu \end{pmatrix}, \begin{bmatrix} \Delta + M\Omega M^t & M\Omega \\ \Omega M^t & \Omega \end{bmatrix} \right\}$

Posterior Distribution

$$\begin{bmatrix} G | Z \end{bmatrix} \sim N\left(\check{\mu}, \check{\Omega}\right)$$
$$\check{\mu} \equiv \mu + \Omega M^{t} \left(\Delta + M\Omega M^{t}\right)^{-1} (Z - M\mu)$$
$$\check{\Omega} \equiv \Omega - \Omega M^{t} \left(\Delta + M\Omega M^{t}\right)^{-1} M\Omega$$

・ロト ・ 理 ト ・ ヨ ト ・

3

Model Specification General Model Model Fitting

Fitting the Model

- Inference is on posterior distribution $[G|Z; \Theta]$
- Specialize general case to hedonic model
- EM Algorithm to obtain $\hat{\Theta}$. Iterate until convergence:
 - update μ, Δ
 - minimize $-2\mathbb{E} \left[\log \left[Z, G \right] | Z; \Theta \right]$

$$\begin{aligned} -2\mathbb{E}\left[\log[Z,G]|Z;\Theta\right] &= \operatorname{logdet} \Delta + \operatorname{logdet} \Omega + Z^t \Delta^{-1} Z + \mu^t \Omega^{-1} \mu \\ &- 2\left[Z^t \Delta^{-1} M + \mu^t \Omega^{-1}\right] \breve{\mu} \\ &+ \breve{\mu}^t \left[M^t \Delta^{-1} M + \Omega^{-1}\right] \breve{\mu} \\ &+ \operatorname{tr}\left[\left(M^t \Delta^{-1} M + \Omega^{-1}\right) \breve{\Omega}\right] \end{aligned}$$

Data Scalability and Sampling Model Output Model Validation

Outline

- Size of Housing Market Modeling/Technology Gap Model Specification General Model Formulation Model Fitting Results Data Scalability and Sampling Model Output Model Validation Scalability & Sparsity Optimization
 - Optimizatio
- 5 Summary

How To Price a House

ヘロト ヘワト ヘビト ヘビト

Data Scalability and Sampling Model Output Model Validation

Data: Maps TIGER/Line Shapefile Data

How To Price a House

(日) (四) (三) (三) (三)

Data Scalability and Sampling Model Output Model Validation

Data: Home Sales King County Department of Assessments

- Table Joins:
 - Real Property Sales (non-flagged 2012 records)
 - Exempt From Excite Tax
 - Related Party, Friend, or Neighbor
 - Quit Claim Deed
 - Multi-Parcel Sale
 - Residential Buildings
 - Parcel Information
- Outlier Filtering:
 - Sale Price: \$100k to \$5m
 - ▶ Lot Size ≤ 1.03 acres
 - No properties with multiple sale records in 2012
- 11,812 homes

Data Scalability and Sampling Model Output Model Validation

Data: Geocoding Yahoo

- 2012: KC records have UID, street address, no lat/long
- 2014: Sporadic lat/long (Seattle, not Tacoma)
- Yahoo geocoder: bash script, 500k lookups over two weeks

 $\texttt{curl -s "http://where.yahooapis.com/geocode?&q=${addr}, +${zip}&flags=C&appid=..."}$

How To Price a House

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Data Scalability and Sampling Model Output Model Validation

Scalability and Sampling I

Recall the objective function to be optimized on each iteration of EM algorithm:

$$-2\mathbb{E}\left[\log[Z,G]|Z;\Theta\right] = \log\det\Delta + \log\det\Omega + Z^{t}\Delta^{-1}Z + \mu^{t}\Omega^{-1}\mu \\ -2\left[Z^{t}\Delta^{-1}M + \mu^{t}\Omega^{-1}\right]\check{\mu} \\ +\check{\mu}^{t}\left[M^{t}\Delta^{-1}M + \Omega^{-1}\right]\check{\mu} \\ + \operatorname{tr}\left[\left(M^{t}\Delta^{-1}M + \Omega^{-1}\right)\check{\Omega}\right]$$

• Naive approach with dense matrices:

- extremely memory intensive
- $O(n^3)$ cost to compute inverse
- Solution: sample, weighted by inverse local density

Data Scalability and Sampling Model Output Model Validation

Scalability and Sampling II

How To Price a House

ヘロト 人間 とくほとくほとう

э

Data Scalability and Sampling Model Output Model Validation

Model Output Coefficients

σ^2	0.22 ²
$ u_1,\phi_1$	(139.51, 57.4 ²)
ν_2, ϕ_2	(0.00, 35.9 ²)
$ u_3, \phi_3$	(0.00, 14.6 ²)
au	7.19
θ_1	2000
θ_2	3.00
σ_0^2	0.1
σ_1^2	73.00

coefficient of variation [active constraint] build cost per square foot (living) build cost per square foot (basement) build cost per square foot (garage) lot size cost per square foot matern "spread" parameter [active constraint] matern "shape" parameter [active constraint] matern "nugget" effect [active constraint] matern "variance"

How To Price a House

ヘロン ヘアン ヘビン ヘビン

Data Scalability and Sampling Model Output Model Validation

• Need predictive distribution $[y_0|Z]$:

 $\mathbb{E}[y_0|Z] = \mathbb{E}[\mathbb{E}(y_0|Y,Z)|Z]$ $= \mathbb{E}[\mathbb{E}(y_0|Y)|Z]$

 $Var[y_0|Z] = Var[\mathbb{E}(y_0|Y,Z)|Z] + \mathbb{E}[Var(y_0|Y,Z)|Z]$ $= Var[\mathbb{E}(y_0|Y)|Z] + \mathbb{E}[Var(y_0|Y)|Z]$

• $[y_0|Y]$ is immediate: extend $\Sigma(\theta)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Scalability and Sampling Model Output Model Validation

Model Comparison

Model Comparison

<ロ> (四) (四) (三) (三) (三)

Data Scalability and Sampling Model Output Model Validation

Model Validation

- Not a predictive model; attempts to characterize variation
- Out of sample coverage of 95% confidence intervals:

Process	86.7%
Process + Proxy	92.0%
Process + Data	97.2%

 Conclusion: the typical variability in a home's sale price is inherently large

Scalability & Sparsity Optimization

Outline

Size of Housing Market Modeling/Technology Gap Model Specification General Model Formulation Model Fitting Data Scalability and Sampling Model Output Model Validation Implementation Scalability & Sparsity Optimization

How To Price a House

ヘロト ヘワト ヘビト ヘビト

Scalability & Sparsity Optimization

Scalability I

- Goal: linear algebra operations to evaluate objective function, gradient should be:
 - sparse matrices
 - Iow rank perturbations to sparse matrices
 - arbitrarily close to sparse matrices under reasonable parameter choices
- Larger sample sizes require sparse representation
- Specializing the general model:
 - *M* is sparse; Ω decomposes into a diagonal and the Matern matrix, Σ(θ).
 - For θ₁ small and θ₂ bounded, Σ(θ) is arbitrarily close to a sparse matrix
 - For θ₁ and θ₂ bounded, Σ(θ) is well conditioned; relative to underlying Euclidean distances

Scalability & Sparsity Optimization

Scalability I

Row

For $\theta_1 = 500$:

How To Price a House

<ロ> (四) (四) (三) (三) (三)

Scalability & Sparsity Optimization

- $\hat{\theta_1}$ is an active constraint, at the upper bound
- reflects a "desire" to increase spatial scale of correlation; smoother surface
- Conclusion: the upper bound enforced on θ₁ should be interpreted as a model complexity parameter
 - keeping θ₁ small increases sparsity of Σ(θ) and decreases scale of spatial correlation effect
 - choose upper bound via cross validation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Scalability & Sparsity Optimization

Inner Optimization

- EM algorithm requires an inner optimization
- Dynamically adjust the convergence tolerance (optim/factr) in early iterations for speed

How To Price a House

Outline

Size of Housing Market Modeling/Technology Gap Model Specification General Model Formulation Model Fitting Data Scalability and Sampling Model Output Model Validation Scalability & Sparsity Optimization Summary

How To Price a House

イロン イロン イヨン イヨン

- The Hedonic Bayesian model needs very few parameters to describe a complex spatial field.
- The model does a good job describing the variability inherent in the data.
- Future Work
 - Experimentation with smaller σ^2 ; cross validation of θ_1 upper bound
 - Increase scalability through a more thorough approach to sparsity