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Lending Club is a relatively new, but fastly growing, peer to peer lending plat-
form. Using historical data provided by the company, we describe a method for
constructing optimial portfolios of Lending Club loans.

Our results, driven by expected returns, compare favorably to investment strate-
gies based solely on the loan grade assigned by Lending Club. Out optimal, actively
managed portfolios have an expected return exceeding 12% annually. In contrast,
portfolios constructed on A-grade loans return 6.68%; B-grade loans, 7.49%; and
C-grade loans, 8.11%.

Introduction

Outline

We first establish a fundamental connection between survival curves and historical
returns of a managed portfolio.

Next, we provide a high level overview of our algorithm which is based on a
random forest adapted to a survival paradigm.

The algorithm outputs a per-loan expected survival curve as well as some indi-
cation of prediction uncertainty. The prediction uncertainty can be extended to a
full variance estimate allowing near optimal portfolio construction via an efficient
frontier-like calcuation.

We conclude with some model summaries, their implications for our results,
and, finally, discuss some of the challenges of deploying our model.

Definitional Due Diligence

In the course of this analysis, unless specified otherwise, we restrict ourselves to
actively managed portfolios. By this, we mean that coupons are immediately pooled
and reinvested in an asset basket with identical statistical characterization. For
example, we consider the collection of A-grade loans as though it were an index
fund which (a) has statistical properties that are constant in time and (b) allows us
to reinvest, at any time, in arbitrarily small amounts. The assumption is that we
can always invest new money at baseline distributed over the whole asset class.

We also routinely refer to bootstrap samples. This is a familiar technique used
within the statistical community, but it may be less well known elsewhere. The
fundamental idea is to resample data, with replacement and typically many times
over, to better understand how much variability exists in a particular estimate of
interest. As an example, suppose you are interested in computing an average, a
single number, of some data you collected. There is inherent variability associated
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with that number: if the experiment was repeated, it would yield different data
and, hence, a different average. Bootstrapping allows for a characterization of that
variability without performing a new experiment. It is particularly useful when an
estimate is sensitive to the sample as might be the case in a dataset with large
outliers.

The Connection Between Survival Curves & Returns

In our first paper, On Lending Club Portfolios[3], we showed a version of Figure 1.
This was in the context of characterizing the default risk, but we only hinted at the
key connection between survival curves and historical returns, namely that survival
curves can be viewed as a data reduction mechanism.

Figure 1: Kaplan Meier estimates of survival curves by grade. These curves show
the probability (y-axis) of a loan surviving through a given month (x-axis). For
example, roughly 95% of grade-A loans pay out over the full 36 month term.

Consider that Figure 1 condenses the behavior of 12,115 loans into 6 smooth
curves. This is a worthy accomplishment only if we can use the survival curves
to recover the estimates we care about. In our case, that’s the historical returns
column displayed in Table 1. In fact, this reconstruction property plays a central
role in classical statistics, and is known as a sufficient statistic: if we reduce the
data to some summary statistic, can we recover a particular estimate from just the
reduced data? For a suffient statistic, the answer is yes.
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Actively Managed Portfolio
Grade Counts Quoted Rate Ideal Return Historical Return

A 3,046 7.88 8.17 6.68
B 3,790 11.26 11.86 7.49
C 2,981 13.23 14.06 8.11
D 1,656 14.96 16.03 8.61
E 508 16.45 17.75 8.15
F 134 18.43 20.07 8.50

Total 12,115 7.62

Table 1: Various Lending Club interest rates, annualized. Note that the aggregate
historical return is over the entire dataset and skews toward grades with more
samples.

Our approach will be to generate a collection of simulated portfolios for each
loan grade. A simulated portfolio will be of the same size as the corresponding set
of graded loans, and will incorporate two sources of randomness: default time and
interest rate.

We use the survival curves to transform random uniform(0,1) realizations into
default times. For example, a simulated grade-D loan with a uniform realization
of 0.85 would default at month 30 whereas a value of 0.83 or lower would mean it
survived the full term—this is because 83% of the time, a realization from a random
uniform(0,1) is less than 0.83, and we want this to coincide with how frequently
grade-D loans survive the full, 36 month term.

A simulated portfolio also relies on interest rates as well, and these are assigned
via bootstrap sampling from the appropriate loan-grade class.

In this way, we generate many simulated portfolios for each loan grade. Each
simulated portfolio has a corresponding return, and these returns can be aggregated
into a density estimate, or histogram.

The results of the simulation are shown in Figure 2. Here, the curves are
the density estimates of the simulated returns. These curves give a sense of the
variability associated with estimates of historical returns. The actual historical
returns, the ones from Table 1, are plotted as the large dots.

In all cases, even for smaller sample sizes, the historical observations occur near
the modes of the density curves. This indicates that the survival curves are an
extremely good summary statistic for the observed historical returns. In short,

a good estimate of a survival curve will provide a good estimate of
portfolio returns.
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Figure 2: The curves are the density estimates of simulated portfolio returns recon-
structed from the survival processes of Figure 1. The large dots are the correspond-
ing observed returns of the historical portfolios quoted in Table 1.
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Algorithmic Overview

Our algorithm seeks to provide an estimate of the survival curve for each loan. We
use an adaptation of the random forest specialized to survival analysis. The core
random forest algorithm is well described in The Elements of Statistical Learning[1]:

1. Take B bootstrap samples of size N

2. For each bootstrap sample, build a partitioning tree, Tb:

(a) Select m < p variables from the p available covariates as split candidates.

(b) For each split candidate, determine a set of values on which to split the
data into two disjoint sets.

(c) For each (split, value) tuple, compute some metric determining the
goodness of split.

(d) Based on the best goodness of split, partition the data into two compo-
nents and recurse.

3. To score a loan, k, take the subset of trees in which the particular loan was
not chosen in the bootstrap sample. Call this collection of trees Tk. These
are the so-called out-of-bag (OOB) trees.

(a) For each OOB tree, t, in Tk, determine the leaf node, l, that contains
the loan k. l represents a subset of loans, namely those that weren’t
separated by the partition induced by t. Compute a Kaplan Meier
estimate, Skt, of the survival curve based on the loans in the terminal
leaf node l.

(b) Take a (function) average of the Skt over t ∈ Tk to obtain a per-loan
survival curve.

Hemant Ishwaran et al.[2] suggests a number of goodness-of-split metrics for
the survival analysis problem. The authors have also released an R package, ran-
domSurvivalForest, to facilitate computation. However, we found that this package
consistently crashed due to memory inefficiencies. For the 12,115 loans in our his-
torical data set, a fairly small modeling problem, their code used all 16GB of RAM
and 4GB of swap space on an 8-core Intel(R) Xeon(R) CPU E3-1230 V2 @ 3.30GHz
computer. This forced the system to terminate the underlying R processes before
completion.

We developed an alternative, memory efficient, multicore version of the algo-
rithm that allowed us to customize the goodness-of-split metric around a C++,
compiler optimized, log-rank statistic.

An example of a partially complete, partitioning tree is given in Figure 3. The
yellow nodes show the splits. In each node, the number of loans to be partitioned
is given. In many cases, the split variable and split condition are also shown. Not
surprisingly, int rate was the best split candidate a number of times. Blue nodes
are terminal leaves. In many cases, they contain only a small number of loans.
However, they can be large as well, as in the case of the leaf node with 398 loans.
Various tuning parameters guide the process and ensure that each node will have
a minimum number of defaults or, say, that terminal leaf nodes will be guaranteed
to contain at least 20 loans.
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Algorithmic Output

It is instructive to visualize the output of the survival forest algorithm for at least a
few specific loans. Figures 4, 5, and 6 do just that. Each OOB tree generates one of
the black, survival curves plotted in each figure. In the notation introduced above,
these are the Skt. These are averaged, pointwise, to obtain estimates of per-loan
survival curves, in orange. The blue regions show the confidence band associated
with 90% coverage.

What is most interesting about these three cases is the difference in the level
of consensus among the trees. This can be understood as an indication of the
prediction uncertainty within the model. For example, loan #567062 has good
agreement across the OOB estimates; there is little prediction uncertainty. On
the other hand, Loan #485099 has far more prediction uncertainty. As per the
short discussion on bootstrap samples, the second of these loans is, evidently, quite
sensitive to the particular sample used when building the OOB tree. As a result,
we would tend to have less confidence in the survival curve estimate produced for
this loan. The upside is that we obtain some feedback about the inherent model
uncertainty.

Figure 4: Survival curve estimate for loan #567062, a grade-A loan with 6.39%
interest rate. This loan exhibits good consensus among the Skt.
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Figure 5: Survival curve estimate for loan #485099, a grade-D loan with 15.33%
interest rate. Here, there is a lot of variation among the Skt.

Figure 6: Survival curve estimate for loan #486576, another grade-D loan with
15.33% interest rate. Relative to loan #485099, there is substantially less variation.

For comparison, Table 2 shows the specific details of these three loans. In many
ways the second and third loans, loan #485099 and loan #486576 respectively, look
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fairly similar. They share the same interest rate and same loan grade. FICO scores
are also nearly identical. On close inspection, there are some differences to be found
in dti and revol util.

One likely explanation for the difference in prediction uncertainly might be
the fact that the second loan, loan #485099, has properties that are somehow not
self-consistent. When an OOB tree splits on one of these inconsistent attributes,
particularly near the root, the results can be rather unstable. Another, more ac-
tionable, view of prediction uncertainty is that, for some loans, there just isn’t a
strong signal that reflects risk, and an investor will probably want to avoid such
“wildcard” loans.

Loan #567062 Loan #485099 Loan #486576

funded amnt 4000 14000 13000
term 36 36 36

int rate 6.39 15.33 15.33
installment 122.40 487.60 452.77

issue d 2010-08-31 2010-02-28 2010-02-25
loan status Fully Paid Fully Paid Fully Paid

total pymnt 4119.77 16244.64 15480.45
total rec prncp 4000 14000 13000

total rec late fee 0 0 0
time 36 36 36

status FALSE FALSE FALSE
acc now delinq 0 0 0

annual inc 70000.00 64300.00 46540.92
apr 8.98 18.48 18.48

chargeoff within 12 mths 0 0 0
collections 12 mths ex med 0 0 0

delinq 2yrs 0 0 0
delinq amnt 0 0 0

dti 13.17 23.55 8.87
earliest cr line 179.2378 167.6741 135.9396

emp length 7 4 5
fico range high 774 669 679
fico range low 770 665 675

grade A D D
home ownership MORTGAGE MORTGAGE RENT
initial list status f f f

inq last 6mths 1 3 1
is inc v 1 0 0

loan amnt 4000 14000 13000
mths since last delinq* 0 0 0
mths since last record* 0.00000000 0.00000000 0.00990099

open acc 6 16 6
pub rec 0 0 1

pub rec bankruptcies 0 0 1
purpose unknown debt consolidation debt consolidation

revol bal 1129 16515 13222
revol util 10.8 46.0 91.8

sub grade 1 18 18
tax liens 0 0 0
total acc 18 28 15

local unemp. rate 13.4 7.6 7.7
36m Survival 0.98 0.78 0.90

36m CI.Width 0.06 0.53 0.19

Table 2: Loan details of the per-loan survival curve estimates
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Prediction Uncertainty and Variance of Returns

The prediction uncertaintly shown in Figure 5 should be unsettling. We have an
estimate, but perhaps little faith in its validity. All other things being equal, we
would prefer a loan with less prediction uncertainty. At the very least, the algorithm
is screaming at us to be wary.

To investigate this phenomena, we would like to borrow from Modern Portfo-
lio Theory and plot expected returns against variance. So far, we have identified
prediction uncertainty, a form of model non-consensus, as one component of total
variance. A second component would be the variance suggested by the survival
curve estimate itself which is, after all, a distributional characterization. To this
end, we use a standard variance decomposition formula to recombine these two sep-
arate pieces of variability. This yields Figure 7. Note that we are showing properties
of total return, over a full 36-month term, for single loans treated as static portfolios
that are not actively managed.

Figure 7: The efficient frontier paradigm: here we report properties of total return
for single loans treated as static portfolios that are not actively managed. The red
lines are adaptive, optimal boundaries based on portfolio size. They show loan avail-
ability in terms of potential, 3-sigma loss: for a portfolio of a given size comprised
of loans above the respective boundary, failure to break even is an exceedingly rare
event.

On first glance, Figure 7 looks troublesome. Standard deviations are large
relative to expected total returns. However, a well-diversified portfolio changes
that perspective. Consider the red lines in the figure. These represent probabilistic
loss boundaries for various portfolio sizes. For a given size, constructing a portfolio
containing loans above the line will produce enough diversification to make the
probability of a non-profit event 0.1%.
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However, there is a disclaimer. This makes two strong assumptions: first, there
is no correlation between defaults; and second, total return is normally distributed
having the given mean and variance. There is no obvious, data-driven way to assess
the first assumption, although it seems reasonable outside of some global economic
catastrophy. The second assumption is false, but risk associated with the second
assumption is less worrisome in large portfolios due to the Central Limit Theorem.

It seems safe to say that while 0.1% may be overly optimistic of a non-profit
event, such an event is increasingly rare for larger portfolios.

More interestingly, if we use the red boundaries as our only condition for loan
selection, we derive two immediate benefits. First, we can construct a good portfolio
from scratch. At the beginning, start with less risky loans. As the portfolio grows,
add the best loan available using the boundary appropriate for the current portfolio
size. The second benefit is that once the portfolio gets large, the only criteria needed
for choosing additional loans is expected returns.

It is perhaps useful to view the scatterplot highlighting various loan classes, and
we do this in Figure 8. These four plots are exact replicates of the one in Figure 7,
but with particular loan classes highlighted.

In the first frame, we show defaults. There is nothing dramatically different
between the distribution of defaulted loans and the full distribution. In particular,
there are no obvious “safe” regions. A closer analysis will show that the marginal
distribution of default standard deviation is slightly higher than the standard devi-
ation of the whole. This is not particularly surprising, but it is a bit disappointing
that the feature is not more conspicuous.

The next three frames show the loan grades. These show the general trend that
reward increases with risk. However, there are plenty of grade-A and grade-B loans
that have higher variance and lower expected return than ones found in the C and
D grades. The latter would clearly make a better investment.
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Figure 8: Efficient frontier by loan classes
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Optimal Portfolio Results

Using the ranking induced by our loan scoring metric discussed in the previous
section, we can define new, performance-based classes of loans. The top 5% are
denoted Gold; the next 10%, Silver; and the following 15%, Bronze. The classes
are defined by their quantiles, so any future loan can be classified by its score. In
particular, this makes it unnecessary to maintain a ranking relative to our historical
training dataset. As more historical data becomes available, these class definitions
could be updated if it were deemed useful.

We proceed by constructing successively nested portfolios. First, consider all the
loans, taking nested subsets until only Gold and Silver remain, and finally only Gold
loans are left in the portfolios. We call this portfolio inclusiveness in Figure 9. For
each of these portfolios of historical loans, we compute the observed return had we
been able to continuously reinvest in a like-basket of assets. This is just the actively
managed portfolio computation applied to each nested subset of observations.

At 100% portfolio inclusiveness, we match the managed return computation as
expected. As we become more and more selective, moving from right to left on the
x-axis, our optimal portfolio begins to outperform portfolios based on loan grades.
By the time we hit portfolios containing only Silver and Gold loans, we are in the
12% range claimed in the introduction.

In Figure 9, there is a slight deviation from the strict, performance-based nesting
described above. In particular, we report portfolios built from scratch, using the
portfolio initialization algorithm described above. Thus, the first few loans, about
0.3%, are not necessarily Gold performers. We felt that this provides a more honest
view of the volatile, small sample behavior.

Figure 9 confirms that small portfolios are indeed plagued with higher variabil-
ity. The dip in the curve in the Gold region is a prime example. This is simply
an artifact of the decreasing sample sizes where default risk is less easily diversified
across a smaller portfolio. For a portfolio containing a larger number of Gold loans,
we might expect the trend to continue upward, somewhere upwards of 13 or 14%
in the limit.
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Figure 9: Performance comparision
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Variable Importance

Figure 10: Variable Importance

Our model obviously uses the covariate information in a fundamentally different
way than does Lending Club. One might wonder which variables are most important
in our optimal portfolio framework. The variable importance plot, an immediate
byproduct of a random forest-type analysis, can be used to address these questions.
See Figure 10.

Hands down, interest rate wins. This is not surprising; it is intended to be the
embodiment of the risk to payoff ratio.

Local historical unemployment rate, an external covariate imported from the
Bureau of Labor Statistics is surprisingly useful, coming in at number 4.

Surprisingly, perhaps, is that grade and subgrade are both in the bottom half.
The FICO credit score, a highly touted risk variable inside the industry, is also
middle of the pack here. One explanation for their poor showing is that interest rate
already contains the information that matters. When the algorithm is determining
a split node, and interest rate and loan grade are both candidates, interest rate is a
finer grain metric and typically wins. That simply means that loan grade has fewer
opportunities to accrue splits of significance.
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Deploying the Model

Figure 11: Loan Availability

Figure 11 shows the evolution of the performance-based loan classes since 2010,
the end of our collection of historical data. It is odd that the growth of Gold loans
have outpaced Silver and Bronze so significantly. Lending Club will tell you that
this is due to increased standards for potential obligors. This would certainly be a
happy situation. However, we have no evidence for or against the claim.

There is also the possibility that, in the intervening years, the meaning of a
loan grade has shifted or the method by which interest rates are set has changed.
Investors must ultimately decide to accept the risk of unknown changes in the
platform in order to be comfortable basing decisions on historical data.

The other difficulty with Lending Club is that, although the platform is originat-
ing more loans than ever ($203.3m in September 2013), there are far more investors
than obligors in the system. For a number of early investors, Lending Club has
granted VIP access to their internal APIs. Some of these early investors are even
rumored to have access to more detailed risk covariates than retail customers. Be-
cause Lending Club wants to protect the retail experience, access to the API is
limited at best and unavailable at worst. My own experience was to be denied API
access even when I only wanted to use it for deeper analytics.

The combination of these effects is to drain the availability of “good” retail
loans. Many bloggers in the P2P lending community have bemoaned the fact that
daily availability has dropped from hundreds of loans only months ago, to only a
few tens of loans today. If more obligors can’t be recruited into the platform, laws
of supply and demand suggest that the cost to invest in these loans should rise.
That translates into an asset class that will create less value for retail investors in
the long run.
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